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Figure 1. Potential surfaces for the lowest singlet states of 90° twisted 
methylene-allyl (minimal basis set). The coordinate Q is obtained by linear 
interpolation from the geometry of II to an intermediate geometry with 
planar subfragments, and from this intermediate geometry to the geometry 
of I. Bond lengths in this "half-way" skeleton are C i C2 = 1.375 A, C2C3 
= 1.475 A, C3C4 = 1.325 A (for this geometry II lies below I). Dotted lines 
show the avoided crossing between the configurations corresponding re­
spectively to I and II.7 Note that the diradical D is a maximum, or a 
near-maximum, along the coordinate for twisting around bond 12 (i.e., 
vertical excitation does not occur from D, but from the untwisted buta­
diene). 

kcal/mol. Substitution by methyl at C-I makes I, 1-methyl 
have a value of 0.1 kcal/mol. The energy difference between 
I and II has now decreased from 9.2 to 0.1 kcal/mol." The 
terminal methyl group stabilizes the methylene positive center 
more than the allylic positive center, a reasonable result in view 
of the larger (0.80 at 1 in I vs. 0.34 at 4 in II) positive charge 
at the former center. If we assume that the methylene-allyl 
can in principle cyclize at 24 in either form I or form II, our 
results would indicate that: (a) unsubstituted butadiene cy-
clizes via II (allyl cation; disrotatory),12 (b) 1-methylbutadiene 
cyclizes via both I and II (no stereospecificity), (c) 1,1-di-
methylbutadiene cyclizes via I (allyl anion; conrotatory).12 

However, since minimal basis sets are notoriously inadequate 
for the energies of anions or anionic fragments (already the few 
extended basis set points appear to decrease the relative sta­
bility of II), and since also we have not reoptimized the 
geometries of I and II in the presence of the substituents, only 
the qualitative trend indicated by our results should be con­
sidered seriously. 

This qualitative trend is a smooth passage from disrotatory 
ring closure to conrotatory ring closure with increasing un-
symmetrical terminal methyl (donor) substitution. It would 
be interesting to test this prediction by investigating whether 

the observed conrotatory preference13 in Dauben's pioneering 
experiment disappears in unsubstituted butadienes, using 
conveniently deuterium-labeled butadienes—or even better 
in a butadiene terminally substituted by an appropriate ac­
ceptor. Experimental confirmation would provide strong 
support for the zwitterionic nature of the primary intermediate 
and would reveal an extraordinary sensitivity of stereochem­
istry to substituents in photochemical reactions which proceed 
through zwitterionic intermediates.14 
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Conjugated Allenic 3-Oxo-5,l0-secosteroids. Irreversible 
Inhibitors of A 5-3-Ketosteroid Isomerase 

Sir: 

The enzymeA5-3-ketosteroid isomerase1 (EC 5.3.3.1) from 
Pseudomonas testosteroni converts C19 and C21 A5-3-keto-
steroids to the corresponding A4-3-ketosteroids. The proposed 
mechanism1,2 involves enolization with removal of the axial 
4A-hydrogen followed by ketonization of the A3'5-dienol with 
axiai reprotonation at C-6. The hydrogen transfer from C-4 
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Scheme I 

to C-6 is intramolecular (Scheme I). This reaction when car­
ried out by mammalian A5-3-ketosteroid isomerases is a key 
step in the biosynthesis of steroid hormones. 

The rapid irreversible inhibition of bacterial A5-3-ketoste-
roid isomerase by the mechanism-based inhibitors 1 and 2 has 
been reported from this laboratory.3 A recent experiment with 
tritium-labeled 1 indicated4 that a single steroid molecule binds 
to each subunit of the enzyme. It was proposed3 that the 
/3,7-acetylenic ketone grouping in compounds 1 and 2 is con­
verted to a conjugated allenic ketone via enzymatic enolization. 
Covalent modification of the enzyme should then occur by 
Michael addition of an adjacent nucleophilic amino acid res­
idue to the allenic ketone (Scheme II). 

We report here the synthesis and characterization of the 
allenic ketones derived from compounds 1 and 2 and their in­
hibitory effects on bacterial A5-3-ketosteroid isomerase. Al­
though enzyme-generated allenes have been postulated as al­
kylating agents in a number of cases,5 the allenic compound 
has been synthesized and studied only in the original example 
described by Bloch et al.6 

Isomerization of 1 with triethylamine in dioxane at room 
temperature for 30 min yielded a 7:3 mixture (relative ratio 
as determined by HPLC) of the isomeric allenic ketones 
(47?)-5,10-secoestra-4,5-diene-3,10,17-trione (3) and (4S)-
5,10-secoestra-4,5-diene-3,10,17-trione (4). We also found that 
a mixture of allenes 3 and 4 in similar proportions was gener­

ated under these conditions starting from either of the pure 
allenic ketones. Compounds 3 and 4 were isolated by HPLC 
in yields of 50 and 10%, respectively, based on acetylenic ke­
tone 1 and had the expected spectroscopic properties.7 The 
more abundant isomer 38 had: mp 141-143°; ir (CHCl3) 1945, 
1735, 1710, 1680 cm-'; NMR (CDCl3) 6 0.98 (s, 3, CH3, 
C-18), 5.32 (m, 1,/6/3,4 = 6Hz1Z6^73 = 6 Hz,/6/3,7a = 12Hz, 
H60), 5.58 (m, I1Z4 6/j = 6.0 Hz, J = 4.2 Hz, J = 1.8 Hz, H4); 
uv (CH3CN) \max 222 nm (e 12 000); MS m/e 286 (M+). 
Allenic ketone 4 had similar properties: ir (CHCl3) 1945,1740, 
1710, 1675 cm-1; NMR (CDCl3) 5 0.98 (s, 3, CH3, C-18), 
5.61 (overlapped m, 1, H6a), 5.69 (overlapped m, 1, H4); uv 
(CH3CN) Xmax 223 nm (e 9400); MS m/e 286.1576 
(Ci8H2203 requires 286.1569). The assignment of stereo­
chemistry at C-6, originally based on NMR data, has been 
unambiguously established by x-ray diffraction studies of 3.9 

Isomerization of 2 under identical conditions gave a 7:3 mix­
ture of 510 and 6.1' Isolated yields and spectroscopic properties 
of 5 and 6 were closely similar to those reported for 3 and 4. 

Allenic ketones 3 and 5 were stable in the 1.0 mM potassium 
phosphate buffer (pH 7.0) used for enzyme inactivation 
studies. In contrast, the allenic ketones 4 and 6 were not stable 
under these conditions and their disappearance followed 
pseudo-first-order kinetics, with half-lives of 37 and 44 min, 
respectively. The products generated from 4 failed to inactivate 
A5-3-ketosteroid isomerase. Incubation12 of A5-3-ketosteroid 
isomerase with the allenic ketones 3-6 (20 or 200 /itM) gave 
the expected pseudo-first-order rates of inactivation.3 Half-
lives of enzyme inactivation at 200 fiM concentrations of 
acetylenic ketone 1 and of the derived allenes 3 and 4 were 564, 
540, and 660 s, respectively. Similarly compounds 2,5, and 6 
gave t\/2 values of 152,168, and 333 s. The rapid enzymatic 
conversion of the acetylenic ketones 1 and 2 to their derived 
allenic ketones 3, 4 and 5, 6, respectively, accounts for the 
closely similar rates of inactivation observed for both types of 
ketones. This facile conversion is not surprising in view of the 
extraordinarily high turnover rate of this enzyme (8.76 X 106 

molecules of A5-androstene-3,17-dione per minute per dim-
er lb). Incubation of allenic ketone 3 with isomerase in the 
presence of 19-nortestosterone, a competitive inhibitor' of this 
enzyme, afforded significant protection against inactivation.14 

This result is consistent with the postulated inactivation of 
isomerase by the allenic ketones at the active site. 

HPLC analysis showed that the allenic ketones were indeed 
generated enzymatically from the acetylenic ketones. Acety­
lenic ketone 1 (200 /uM) was incubated with isomerase (4.80 
/uM) and after 2 min an aliquot was injected directly on a high 
pressure liquid chromatograph. An 8:2 (relative ratio) mixture 
of allenic ketones 3 and 4, respectively, was observed ac­
counting for 94% of the initially incubated acetylenic ketone. 
Analysis of an exactly comparable experiment with 2 showed 
that 90% of the acetylenic ketone could be accounted for as a 
9:1 (relative r^tio) mixture of 5 and 6. No allenic ketones were 
found in control incubations without enzyme. 

In summary, we have synthesized and characterized the 
allenic ketones which were postulated to be enzyme generated 
inhibitors of A5-3-ketosteroid isomerase. We have shown that 
these compounds are generated by the enzyme and are indeed 
powerful irreversible inhibitors of the enzyme. Evidence has 
been presented on the stoichiometry and active site-directed 
nature of the inactivation. Further studies on the intercon-
versions of the acetylenic ketones and the derived isomeric 
allenic ketones as well as the effects of these compounds on 
steroid hormone biosynthesis are in progress. 
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A Rearrangement of Penicillin Sulfoxides to 
3-Methylenecephams via Sulfinyl Intermediates1 

Sir: 

The ring expansion of penicillin sulfoxides to deacetoxyce-
phalosporins achieved by Morin and co-workers2 is significant 
for two reasons: (a) it has provided the first direct chemical 
correlation between the penicillins and cephalosporins, and (b) 
it has afforded a practical method for preparing clinically 
important antibiotics containing deacetoxycephalosporin 
nucleus.3 We have discovered a new oxidative ring expansion 
of penicillins yielding 3-methylenecepham sulfoxides. This new 
substance appears to be a very versatile intermediate for the 
synthesis of a wide variety of commercially significant ce­
phalosporins. Namely, the highly desirable exomethylene 
functionality located at the 3-position offers the opportunity 
to functionalize that group and to make various 3-substituted 
cephalosporins.4 

We have found that the sulfinyl halide, II (prepared from 
penicillin sulfoxide, I, and halogenating agents), can be cy-
clized to 3-methylenecepham sulfoxides, III, by means of Lewis 
acids. 

Treatment of the penicillin sulfoxide I (R = Ft, R, = CH3) 
with NCS (1 equiv, 70 min) in refluxing CCU gave in almost 

O 
t 

O 

R—I—T"SV/ Ncs 4-f^S CH2 snq - f - r ^ 8 ^ 

( / - * ! * rNy^CH3 K ^ C H , 
COOR1 C 0 0 R ] C00R1 

I II III 

R = phthalimido (Ft), phenoxyacetamido 
R1 = CH3, p-nitrobenzyl (pNB) 

NCS = iV-chlorosuccinimide 

quantitative yield a mixture of the sulfinyl chlorides II which 
are epimeric at sulfur.5 Similarly, when the penicillin sulfoxide 
having an amide side chain (I, R = phenoxyacetamido, Ri = 
pNB) was refluxed in toluene with NCS (1 equiv, 90 min), the 
corresponding sulfinyl chloride II (X = Cl) was obtained:6 

NMR (CDCl3) 5 1.93 (s, 3, CH3), 4.58 (s, 2, side chain CH2), 
5.17 (m, 3, olefinic methylene and -CtfCOOpNB), 5.35 (s, 
2, ester CH2), 5.61 (d, 1, 7 = 5.0 Hz, azetidinone H), 6.2 (dd, 
1, 7 = 5.0 and 8.0 Hz), and 6.9-8.3 (m, 9, ArH); m/e 374. 

Ring closure of II (R = Ft, R1 = CH3 , X = Cl) with SnCl4
7 

(1 equiv, CH2Cl2 , 22°, 1 -2 h) gave a mixture of the R and S 
sulfoxides III in the ratio of ca. 2:1, separable by chromatog­
raphy on silica gel (eluent: 20% EtOAc/CHCl3) .8 The R 
sulfoxide III melts at 201-202° (CH2Cl2/cyclohexane): NMR 
(CDCl3) 0 3.62 and 4.12 (ABq, 7 = 1 4 Hz, C2-H), 3.85 (s, 3, 
OCH3) , 4.88 (d, 1, J = 4.5 Hz, C 6 -H) , 5.25 (br s, 1, C 4 -H) , 
5.58 (m, 2, C H 2 = ) , 5.97 (d, 1, J = 4.5 Hz, C 7 -H) , and 7.84 
Hz (m, 4 ArH). The S sulfoxide was isolated as colorless foam: 
NMR (CDCl3) 5 3.63 (s, 2, C 2 -H) , 3.82 (s, 3, OCH3) , 4.90 
(d, 1, J = 4.5 Hz, C6-H), 5.32 (s, 1), 5.46 (br s, 1, C4-H), 5.64 
(d, 1, J = 4.5 Hz, C7-H), 5.77 (s, 1), and 7.84 Hz (m, 4, ArH); 
m/e 374.9 

Both R and 5 sulfoxides III after reduction with PBr3 (1 
equiv, DMF, 0-5°, 0.5 h)1 0 gave the same methyl 7-phthali-
mido-3-methylenecepham (75%): mp 194-196.5° (EtOAc); 
NMR (CDCl3) 8 3.38 and 3.63 (ABq, 2, 7 = 14 Hz, C 2 -H) , 
3.80 (s, 3, OCH3), 5.32 (m, 3), 5.46 (d, 1, J = 4.5 Hz, C6-H), 
5.67 (d, 1, J = 4.5 Hz, C 7 -H) , and 7.83 Hz (m, 4, ArH); m/e 
358. 

While the cyclization of II with the phthalimido side chain 
resulted in the formation of R and S sulfoxides III, a similar 
cyclization with the phenoxyacetamido compound II yielded 
only the 5 sulfoxide III. Thus, the treatment of II (R = 
phenoxyacetamido, R, = pNB, X = Cl)11 with SnCl4 (1 equiv 
of toluene, 2 h, 22°) gave III:8 mp 194-196° (EtOAc); NMR 
(CDCl3) 5 3.5 and 3.75 (ABq, 2, 7 = 15 Hz, C 2 -H) , 4.55 (s, 
2, side chain CH2) , 4.83 (d, 1, J = 4.5 Hz, C 6 -H) , 5.3 (s, 2, 
ester CH2) , 5.33 (s, 1), 5.5 (s, 1), 5.78 (s, 1), 6.02 (dd, 1,7 = 
4.5 and 9.0 Hz), and 6.9-8.3 (m, 9, ArH). Reduction of this 
sulfoxide with PBr3 (1 equiv, DMF, 22°, 1 h) gave />nitro-
benzyl 7-phenoxyacetamido-3-methylenecepham-4-carbox-
ylate identical with an authentic sample.12 

From a mechanistic point of view it was of interest to know 
which carbon of the intermediate sulfinyl halide participates 
in the formation of the S-C bond during the cyclization pro­
cess. The rearrangement was repeated with the deuterated 
compound IV, the stereochemistry of which has been pre­
viously established.13 In IV, deuterium is incorporated only 
in the a-methyl group and consequently after treatment of IV 
with NCS (1 equiv, 30 min, Cl2CHCH2Cl, 114°) the sulfinyl 
chloride V, with the methylene group being more than 95% 
deuterated, was obtained. Ring closure of V to VI was achieved 
with SnCl4 (1 equiv, CH2Cl2 , 22°, 50 min). A mixture of the 
R and S sulfoxides of VI was isolated and immediately reduced 
with PBr3 (1 equiv, DMF, 0-5°, 35 min) to methyl 2-dideu-
terio-3-methylene-7-phthalimidocepham-4-carboxylate (VII): 
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